Robot Pi Shop

SN7483– 4-Bit Binary Full Adder

$0.90
Quantity

IC 7483 – 4-Bit Binary Full Adder

The objective of this project is to fully understand the 10’s complement using the 4-bit adder IC-7483. The IC-7483 is a commonly available TTL 4-bit parallel adder chip. It contains four inter-connected fully adders and a look-ahead carry circuitry for its operation.

The logic symbol of IC-7483 is shown in figure 2. It has two 4-bit inputs X3, X2, X1, X0 and Y3, Y2, Y1, Y0 and the carry input Cin in the LSB stage. The outputs are a 4-bit sum S3, S2, S1, and S0 and carry output Cout from the MSB stage. Two or more parallel adder blocks can be connected in a cascade to perform the addition operation on larger binary numbers. The four least significant bits of the number are added in the first adder.

The carry output of this adder is given as the carry input to the second adder, which adds the four most significant bits of the number. The output carries of the second adder is the final carry output.

Circuit Diagram

10's Complement Circuit Diagram
10’s Complement Circuit Diagram

Components Required

  • 7483 Full Adder IC
  • 7404 NOT Gate IC
  • 3 Terminal Switch (x4)
  • LED (x4)
  • +5V Power Supply
  • Breadboard
  • Wires

About Parts of 10’s Complement Circuit

IC-7483 Full Adder (4-Bit Binary Adder)

IC-7483 Block Diagram for 10's Complement circuit
IC-7483 Block Diagram
IC-7483 Pinout for 10's Complement circuit
IC-7483 Pinout

The IC-7483 is a commonly available TTL 4-bit parallel adder chip. It contains four interconnected full adders; a look-ahead carry circuitry for its operation (CLA = Carry Look-Ahead Adder). The logic symbol of IC7483 is shown in fig 2 and the pin configuration in table 1. It has two 4-bit A3, A2, A1, A0 and B3, B2, B1, B0 and a carry input Cin in the LSB stage. The outputs are a 4-bit sum S3, S2, S1, S0 and a carry output (Cout) from the MSB stage.

Two or more parallel adder blocks can be connected in a cascade to perform the addition operation on a larger binary number. The four LSB of the number is added in the first adder. The carry output of this adder is given as carrying input to the second adder, which adds the four MSB of the number. the output carry of the second adder is the final carry output.